Обънайдем середины отрезков:
1) точка К на отрезке АС: К(-2+0/2;2+0/2) = K(-1;1)
уравнение медианы ВК: х-х1/х2-х1 = у-у1/у2-у1
х-1/-1-1 = у-2/1-4 = 3х-2у + 1 = 0
2) тока L на отрезке АВ: L(-0,5;3)
уравнение медианы CL: х-0/0,5-0 = у-0/3-0 = 3х +0,5у=0
3) точка M на отрезке ВС: M(0,5;2)
уравнение медианы АМ: х+2/0,5+2 = у-2/2-2
х+2/2,5 = 1, х = 0,5
!!!уравнение сторон:
уравнение стороны АВ: х+2/3 = у-2/2 = 2х-3у+10 = 0
уравнение стороны АС: х+2/0+2 = у-2/0-2 = 2у-2х = 0
уравнение стороны ВС: х-1/0-1 = у-4/0-4 = 4х-у = 0
1 этап:
Точка, прямая, окружность.
2 этап:
1. На плоскости нужно отметить произвольную точку
2. Через эту точку провести прямую произвольной длины
3. Взять циркуль и провести окружность с центром в точке, которую мы построили в 1 пункте
4. Отметить точки пересечения нашей окружности из 3 пункта и прямой (точки А и B) - это будут крайние точки нашего основания.
5. Не изменяя раствора циркуля провести из точек А и B окружности, точка пересечения этих окружностей будет 3 вершиной равнобедренного треугольника.
6. Соединить 3 полученные точки.
3 этап:
Пусть AB = a.
Отметим на нашем основании точку М = b ⋂ a. По рисунку эта точка совпадает с точкой пересечения окружностей, которые мы провели из крайних точек основания: точек А и B.
АМ = BM (как радиусы равных окружностей), а значит т.М совпадает с точкой пересечения медианы и основания. Отсюда, так как медиана совпадает с биссектрисой треугольник является равнобедренным.
4 этап:
Да, всегда будет иметь решения.