все остальные углы нетрудно найти из выражения 165 + n*90, где n - целое
n = 0, угол = 165 + 0*90 = 165 - наш заданный угол
n = 1, угол = 165 + 1*90 = 255 - больше 180 (развернутого угла), т.е. не считается, так же как и для всех n>0, так что переходим в область отрицательных чисел
n = -1, угол = 165 - 1*90 = 75 - острый, не годится, по условию
n = -2, угол = 165 - 2*90 = -15 - так-же острый, не годится
n = -3, угол = 165 - 3*90 = -105 - как раз тупой и меньше чем 165
n = -4, угол = 165 - 4*90 = -195 - по абсолютному значению опять превышает 180 - не годится как и все прочие при n<-4
Так что перебором нашли что меньший тупой гол равен 105 градусам.
все остальные углы нетрудно найти из выражения 165 + n*90, где n - целое
n = 0, угол = 165 + 0*90 = 165 - наш заданный угол
n = 1, угол = 165 + 1*90 = 255 - больше 180 (развернутого угла), т.е. не считается, так же как и для всех n>0, так что переходим в область отрицательных чисел
n = -1, угол = 165 - 1*90 = 75 - острый, не годится, по условию
n = -2, угол = 165 - 2*90 = -15 - так-же острый, не годится
n = -3, угол = 165 - 3*90 = -105 - как раз тупой и меньше чем 165
n = -4, угол = 165 - 4*90 = -195 - по абсолютному значению опять превышает 180 - не годится как и все прочие при n<-4
Так что перебором нашли что меньший тупой гол равен 105 градусам.
Ak - медиана треугольника AMB, так как BK=KM
S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)
Проведем ML параллельно AP
ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC
KP - средняя линия BMP=>PL=PB
PL=LC; PL=PB =>PL=LC=PB
S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6
S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12
S(mbc)/S(cmkp) = 1/4 S(abc)/ 5/12S(abc)= 3/5