1) SinA= 12/x
x= 12/0.3 =40
так как пирамида правильная то AB и является той самой высотой
по свойству скрещивающихся прямых BH перпендикулярна AH поэтому треугольник ABH прямоугольный
ответ: высота = 40
2) Пусть сторона квадрата основания равна а, а высота пирамиды равна h.
Тогда диагональ квадрата основания равна акор2, ее половина равна (акор2)/2
Тогда тангенс угла между боковым ребром и основанием равен отношению высоты пирамиды к половине диагонали и равен:
2h/(акор2) = кор2
Отсюда 2h/а = 2
Тангенс угла между боковой гранью и основанием равен отношению высоты пирамиды к половине стороны квадрата основания, т.е:
h/(а/2) = 2h/а = 2.
ответ:2
Теорема. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Доказательство. Пусть ABC – данный треугольник, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Прямоугольные треугольники AOD и AOE равны по гипотенузе и катету. У них гипотенуза AO общая, а катеты OD и OE равны как радиусы. Из равенства треугольников следует равенство углов OAD и OAE. А это значит, что точка O лежит на биссектрисе треугольника, проведённой из вершины A. Точно так же доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.
Объяснение: