Сумма двух углов параллелограмма 222°. Это не может быть сумма углов, прилежащих к одной стороне, так как тогда бы эта сумма была равна по свойству параллелограмма 180°. Следовательно. это сумма противолежащих углов параллелограмма, а противолежащие углы в параллелограмме равны. 222° : 2 = 111° Два тупых противолежащих угла в параллелограмме по 111°. Найдём величину двух других углов, они тоже раны, так как противолежащие. Сумма всех четырёх углов 360°, сумма двух из них 222°. Оставшиеся углы: (360° - 222°) : 2 = 138° : 2 = 69°. ответ: два угла по 69°, два угла по 111°.
Подробно: При решении подобных задач нужно помнить о неравенстве треугольника. В теореме о неравенстве треугольника утверждается, что в треугольнике любая сторона меньше суммы двух других. Можно рассматривать два случая: 1) большей стороной является основание; 2) большей является боковая сторона. Если принять боковую сторону равной х, то для равнобедренного треугольника по этому условию получим х+х < 3х. Поэтому основание не может быть большей стороной, т.к. не удовлетворяет неравенству треугольника. ( Боковые стороны тогда просто не "дотянутся" друг до друга и "улягутся" на основание). ------------------------- Примем основание треугольника равным х. Тогда боковые стороны равны 3х каждая. Р= х+3х+3х=7х 7х=50 см
ответ: 1. Знайдемо координати точки М, яка є серединою сторони АС за формулою ділення відрізка на дві рівні частини:
Хм=
=
=1; Yм=
=
= -1
Отже, координати точки М (1;-1).
2. Довжину медиани знайдемо, як відстань між двома точками за формулою:
BM =
=
=
одиниць.
3. Рівняння медиани ВМ запишемо, скориставшисьформулою рівняння прямої, щопроходить через дві точки:
Підставивши координати точок В(0;1) і М(1;-1) запишемо загальне рівняння медиани ВМ:
х=
;
-2х=у-1;
-2х-у+1=0.
Для знаходження рівняння з кутовим коефіцієнтом kВМ медиани ВМ, розв"яжемоотримане рівняння відносно у:
у= -2х+1, звідси k=-2.
Відповідь: довжина медиани
одиниць, загальне рівняння медиани -2х-у+1=0, рівняння з кутовим коефіцієнтом у=-2х+1.
Малюнок до задачі в додатку.
Объяснение: