Δ АВС - равносторонний, значит, ∠ А = ∠ В = ∠ С = 180° : 3 = 60° ВО = 12√3 (см) – высота Рассмотрим Δ АВО – прямоугольный, так как ∠ АОВ = 90° против.кат. ВО sin ∠ A = ––––––––––– = –––– гипот. АВ
Доказательство: 1) Через точку B2 проведем прямую EF, EF ∥ A1A3. 2) Рассмотрим четырехугольник A1FB2A2.- A1F ∥ A2B2 (по условию),- A1A2 ∥ FB2 (по построению).Следовательно, A1FB2A2 — параллелограмм. По св-ву противолежащих сторон параллелограмма, A1A2=FB2. 3)Аналогично доказываем, что A2B2EA3 — параллелограмм и A2A3=B2E. 4) Так как A1A2=A2A3 (по условию), то FB2=B2E. 5) Рассмотрим треугольники B2B1F и B2B3E.- FB2=B2E (по доказанному),- ∠B1B2F=∠B2EB3 =∠B2FB1=∠B2EB3. Следовательно, треугольники B2B1F и B2B3E равны.Из равенства треугольников следует равенство соответствующих сторон: B1B2=B2B3. Теорема доказана. :)
ответ: площадь треугольника равна 12см^2.
Объяснение:
Площадь треугольника можно вычислить по формуле:
S=(1/2)*a*b*sina, где а и b - стороны треугольника, а sina - синус угла между этими сторонами.
S=(1/2)*6*8"(1/2)=12см^2.
Или так: проведем высоту ВН к стороне АС. Это катет, лежащий против угла 30°. Он равен половине гипотенузы.
Тогда если сторона АВ=6см (гипотенуза), а сторона АС=8см, то ВН=3см и площадь треугольника равна S=(1/2)*AC*BH =(1/2)*8*3=12см^2.
Если АВ=8см, а АС=6см, то ВН=4см и S=(1/2)*6*4=12см^2.