1. ∠B = 80°, ∠C = 30°.
Теорема. Сумма углов любого Δ равна 180°.
Тогда ∠A + ∠B + ∠C = 180°,
∠A + 80° + 30° = 180°,
∠A = 180° - 80° - 30° = 70°.
Теорема. Против большего угла в треугольнике лежит большая сторона.
Против ∠A лежит сторона BC.
Против ∠B лежит сторона AC.
Против ∠C лежит сторона AB.
∠A = 70°, ∠B = 80°, ∠C = 30°, поэтому
AC > AB, AC > BC, и BC > AB, то есть
AB < BC < AC.
2. Треугольник существует, если выполнено неравенство треугольника: длина наибольшей стороны должна быть меньше суммы длин двух других сторон.
10м < 5м + 8м = 13м,
10м < 13м.
Итак, неравенство треугольника выполнено и треугольник со сторонами 5м, 8м и 10м существует.
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4