Шаги построения:
1) Проведем к стороне AB перпендикуляр P выходящий из точки B (при угольника или циркуля)
2) Проведем к стороне BC перпендикуляр S, который выходит из точки G, являющийся серединой BC (опять же все при угольника или циркуля.) Этот перпендикуляр называют серединным перпендикуляром к стороне BC.
3) В пересечении перпендикуляров P и S получаем точку O.
4) Начертим окружность c центром в точке O и проходящую через точку B.
5) В пересечении этой окружности и стороны AC получаем необходимую точку D.
Объяснение:
Поскольку радиус OB ⊥ AB, то AB является касательной к окружности в точке B.
В ΔСOB отрезок OG является медианой и высотой к стороне BC, а значит ΔСOB равнобедренный, а именно OС = OB, а значит OC тоже радиус данной окружности, иначе говоря, построенная окружность пересекает также и точку С, то есть AC является секущей, проходящей через данную окружность.
Но тогда по теореме касательной и секущей имеем:
AB^2 = AC * AD
а = 3, в = 4, с = 5. Треугольник прямоугольный, т.к 5² =3² + 4²
Биссектриса внутреннего угла тр-ка делит противолежащую углу сторону на части, пропорциональные прилегающим сторонам, т.е гипотенуза с поделена на отрезки: х, прилегающий к стороне а и (с-х), прилегающий к стороне b.
а:a1 = b:b1
3:х = 4:(5-x)
15 - 3x = 4x
7x = 15
a1 = x = 15/7
b1 = 5-x = 5 - 15/7 = 20/7
Сама биссектриса равна:
Lc = √(a·b - a1·b1)
Lc = √(3·4 - 15/7· 20/7)= √(12 - 300/49) = √(588/49 - 300/49) = √(288/49) =
12√2/7
ответ: 12