М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
salamov1213
salamov1213
18.07.2020 12:33 •  Геометрия

Отрезок cd не пересекает плоскость a, а точка e делит отрезок cd в отношении 5: 3 , считая от точки c.через точки c,d и e проведены параллельные прямые , пересекающие плоскость a в точках c1,d1 и e1 соотв. найдите длину отрезка ee1, если cc1=14см и dd=20см

👇
Ответ:
Zulem
Zulem
18.07.2020
Фигура СДД₁С₁ - трапеция.
Проведём отрезок СК параллельно С₁Д₁.
Получаем треугольник СДК и подобный ему с вершиной в точке Е.
По свойству подобных треугольников составляем пропорцию:
(неизвестный отрезок с точкой Е  - пусть это будет х)
\frac{x}{5} = \frac{20-14}{5+3}
x / 5 = 6 / 8
Отсюда находим х = (5*6) / 8 = 30 / 8 = 15 / 4 см.
Тогда длина отрезка ЕЕ₁ = 14 + (15/4) = 17(3/4) = 17,75 см.
4,6(22 оценок)
Открыть все ответы
Ответ:
Savosin229
Savosin229
18.07.2020
Грань SCD и плоскость основания пирамиды пересекаются по прямой CD. Чтобы найти угол между этими плоскостями, рассмотрим треугольник SBC. Треугольник SBC -прямоугольный: SB перпендикулярна плоскости основания, а значит любой прямой, лежащей в плоскости основания, SB перпендикулярна BC. BC перпендикулярна CD, как стороны квадрата. SC- наклонная к плоскости основания перпендикулярна прямой CD по теореме о трех перпендикулярах-прямая (CD) проведенная в плоскости через основание наклонной(SC) перпендикулярно ее проекции (BC) на эту плоскость перпендикулярна и к самой наклонной.SC лежит в плокости грани SCD и перпендикулярна CD, BC лежит в плоскости основания и перпендикулярна CD , следовательно угол SCB -это угол между двумя плоскостями ABCD и SCD. Рассмотрим треугольник SBC  и из этого треугольника найдем  угол SCB.
Найдем сторону квадрата: 
BD²=2BC²,  (4√2)²=2BC², BC²= 16·2/2=16, BC=4
ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания)   найдем SB:
SB²=SD²-BD²
SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3.
Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3
tg∠SCB=√3, ∠SCB=60 градусов
4,5(3 оценок)
Ответ:
direcrtbyrage
direcrtbyrage
18.07.2020
Sромба=(d₁*d₂)/2, d₁-диагональ АС ромба АВСД,  d₂ -диагональ ВД
600=(40*d₂)/2, 600=d₂*20, d₂=30 см
диагонали пересекаются в точке О и делятся пополам.
сторона ромба АВ²=АО²+ОВ², (АО=d₁/2=20 cм, ОВ=d₂/2=15 см)
АВ²=20²+15². АВ=25 см
ΔАОВ: АВ= 25 см, АО=20 см, ВО= 15 см.
ОМ перпендикулярна АВ.
рассмотрим Δ АМО: АМ =х см, АО=20см МО найти. МО²=20²-х²
рассмотрим Δ ВМО: ВМ =25-х см, ВО=15см МО найти. МО²=15²-(25-х)²
20²-х²=15²-(25-х)²
400-х²=225-625+50х-х²
50х=800, х=16. 
найдем МО: МО²=15²-(25-16)², МО=12 см.
рассмотрим ΔМОР (Р -точка, отстоящая от плоскости ромба на расстоянии 16 см)
МР= -наклонная, РО=16 см- перпендикуляр к плоскости ромба (по условию)
МО- проекция наклонной МР. МР перпендикулярна стороне ромба АВ, следовательно и наклонная перпендикулярна АВ по т. о трех перпендикулярах.
ΔМОР прямоугольный, по т. Пифагора: МР²=МО²+РО²
МР²=12²+16², МР²=400, МР =20см.
ответ: расстояние от точки до каждой стороны ромба =20 см.
4,7(69 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ