М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
volk910
volk910
25.05.2021 10:08 •  Геометрия

Основание пирамиды прямоугольник с длинами сторон 6 и 8 см длина каждого бокового ребра 13 см. найти высоту пирамиды

👇
Ответ:
D=V36+64
d=10
H=V13^2-(d/2)^2
H=V169-25
H=12
ответ:12
4,5(99 оценок)
Открыть все ответы
Ответ:
Zen201
Zen201
25.05.2021
Значит так. Чертим прямоугольный треугольник. 
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
 x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5
Впрямоугольном треугольнике abc с прямым углом c проведена высота ch. чему равен отрезок bh, если ac
4,6(37 оценок)
Ответ:
nastyasergeeva9
nastyasergeeva9
25.05.2021
Высота -- 3, боковое ребро -- 10. Значит, половина диагонали основания (которое, кстати, квадрат) по теореме Пифагора равна \sqrt{10^2-3^2} = \sqrt{91}. Значит, вся диагональ -- 2 \sqrt{91}, а сторона квадрата, которая в \sqrt{2} раз меньше, чем диагональ, равна \sqrt{182}. Таким образом, боковая грань представляет собой треугольник со сторонами 10, 10, \sqrt{182}. Площадь этого треугольника можно найти, например, опустив высоту из вершины, (эта высота будет и медианой). Получается, высота равна \sqrt{10^2- (\frac{\sqrt{182}}{2})^2 } = \frac{ \sqrt{218}}{2}, откуда площадь одного треугольника равна  \frac{ \sqrt{218}}{2}* \sqrt{182}/2, а площадь боковой поверхности равна площади четырёх таких треугольников, т. е. \sqrt{218} \sqrt{182} = \sqrt{39676} = 2 \sqrt{9919} Может, обсчитался где-то.
4,7(91 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ