Поскольку BD - биссектриса угла CDA, то ∠ADB = ∠BDC.
∠ADB = ∠DBC как накрест лежащие углы при AD║ BC и секущей BD, следовательно, ΔBCD - равнобедренный ⇒ BC = CD = AB. Достроим до параллелограмма BCDE, в нём BCDE - ромб.
P = AB + BC + CD + AD = 3AB + AD ⇒ AD = 62 - 3 AB
AE = AD - DE = 62 - 3AB - AB = 62 - 4AB
AF = FE = 0.5 * AE = 31 - 2AB
По теореме Пифагора из прямоугольного треугольника ABF
Значение, AB = 83/5 не подходит, так как AD = 62 - 3 * 85/3 < 0 что не может быть отрицательным.
BC = AB = 13 см, тогда AD = 62 - 3 * 13 = 23 см.
ответ: 13 см и 23 см.
Назовем трапецию АВСD. АВ=17 см, ВС=16 см, СD=25 см, AD=44 см
Площадь трапеции равна произведению её высоты на полусумму оснований. Основания даны, высоту надо найти.
Один из решения:
Проведем СМ параллельно ВА. СМ=17 см (или ВК параллельно СD. Тогда ВК=25).
Получим треугольник, в котором известны три стороны: 17, 25 и 28 см.
По ф. Герона площадь этого треугольника равна 210 см².
Высота СН является и высотой трапеции.
S(∆ MCD)=CH•MD:2⇒
CH=2•S:MD=420:28=15 см
S(ABCD)=CH•(BC+AD):2=15•30=450 см²