r=7.5 cm
Объяснение:
Пусть дан прямоугольный треугольник АВС, в котором угол В-прямой. Окружность с центром в точке О, которая лежит на гипотенузе касается катета ВС в точке Т и проходит через точку А. Гипотенуза АС пересекает окружность в точке К. К находится между О и А.
Известно, что катеты АВ=12 и ВС=16.
Проведем радиус ОТ. Так как Т точка касания , то треугольник ОТС-прямоугольный и угол Т -прямой.
Косинус угла С равен:
cosC=BC/AC
Найдем АС по т. Пифагора из треугольника АВС:
АС=sqr(AB^2+BC^2)=sqr(144+256)=sqr400=20
cosC=16/20=4/5
sinC =sqr(1-cosC^2)=sqr(1-16/25)=sqr(9/25)=3/5
ОС=ОТ/sinC=r*5/3=OK+KC
5/3*r=r+KC
KC=2/3*r
AC=20=2r+2/3*r
8*r/3=20
8r=60
r=60/8
r=7.5 cm
Диагональ прямоугольника делит его на два треугольника, отношение сторон которых равно отношению сторон "египетского треугольника". т.е. 3:4:5
Примем коэффициент отношения сторон за х.
Тогда при катетах 3х и 4х гипотенуза равна 5х.
Следовательно , диагональ здесь играет роль гипотенузы
5х=20
х=4
Один катет равен 3*4=12 см - это меньшая сторона прямоугольника
другой 4*4=16 см - это большая его сторона.
ответ: Большая сторона прямоугольника равна 16 см.
Задачу можно решить и через теорему Пифагора:
20²=(3х)²+(4х)²
400=9х²+16х²
25х²=400
х²=16
х=4 см
Но гораздо удобнее знать хотя бы несколько так называемых Пифагоровых троек, к которым относится и египетский треугольник.
2) АС
3) ВС
Вродебы так