М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
netif1978
netif1978
07.07.2022 16:03 •  Геометрия

Втреугольнике abc ∠с = 90°, ∠a = 60°, ab = 18см. найдите ac.

👇
Ответ:
Решаем задачи по геометрии

Элементы произвольного треугольника ABC обычно обозначаются так:
BC, CA, AB — стороны;
a, b, c — их длины;
α, β, γ — величины противолежащих углов;
ha, ma, la — высота, медиана и биссектриса, выходящие из вершины A;
R — радиус описанной окружности,
r — радиус вписанной окружности;
S — площадь,
p — полупериметр.
Отметим, что в отдельных задачах обозначения могут отличаться от стандартных.
Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть
c2 = a2 + b2,
где c — гипотенуза треугольника.

Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,

где c — гипотенуза треугольника.

Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.

Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.

Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри тре­угольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).

Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения

Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).

Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.

Теорема 8 (формулы для вычисления площади треугольника).

4

Последняя формула называется формулой Герона.

Теорема 9 (теорема о биссектрисе внутреннего угла).

Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть
b : c = x : y.

Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)

.

Теорема 11 (формула для вычисления длины биссектрисы).

Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).

Теорема 13 (формула для вычисления длины медианы).

Доказательства некоторых теорем

Доказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов:

BD2 = AB2 + AD2 – 2∙AB∙AD∙cos ∠BAD;
CD2 = AC2 + AD2 – 2∙AC∙AD∙cos ∠CAD.
Или, что то же самое,

Выразим из каждого неравенства и приравняем полученные результаты:

Применив теперь к треугольнику ABC теорему о биссектрисе внутреннего угла, получим, что
4,7(55 оценок)
Открыть все ответы
Ответ:
e2005n
e2005n
07.07.2022
Прикладываю рисунок* 
Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. 
Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. 
Sтрапеции=27+33/2 * 6 = 180 см^2 
ответ:180 см^2
Вот, буду основание прямоугольной трапеции равны 27 см и 33 см, а острый угол равен 45 градусам. най
4,4(97 оценок)
Ответ:
вовчик83
вовчик83
07.07.2022

1. По катету и гипотенузе (PAD=DCB)

2. По двум катетам (MKT=NKT)

3. По катету и гипотенузе, по 2 катетам, острому углу (PSK=RSK)

4. По гипотенузе и острому углу (ERF=ESF)

5. По катету и гипотенузе (Если SPM=TKM) По двум катетам (Если SRM=TRM)

6. По катету и гипотенузе (Если AED=BFD) По двум катетам (Если ACD=BCD)

7. прости, не знаю

8. ...

9. По катету и стороне (не уверена) (ADE=BFM)

10. По двум катетам (ADB=CBD)

Объяснение:

в 3 задании т.к. углы при основании PR равны, то прямоугольник равнобедренный, а значит треугольники прямоугольные, а KS делит основание напополам и их равенство можно доказать по 2 катетам, так как стороны боковые равны будут можно по катету и гипотенузе или же по гипотенузе и острому углу.

в 5 и 6 задании т.к. маленькие треугольники равны, то и углы при основании равны, а значит 2 треугольника в которых маленькие тоже прямоугольные.

4,5(20 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ