Биссектриса угла а равнобедренного треугольника abc пересекает основание в точке м. найдите длину отрезка ам, если периметры треугольников abc и abm равны 32 и 24 соотвественно.
Pabc=AB+BC+AC Pabm=AB+BM+AM при этом в равноб. треуг. AM - биссектриса, медиана и высота, значит: BM=0,5BC треуг. равноб., значит: AB=AC упрощаем выражения и подставляем значения: 2AB+BC=32 AB+0,5BC+AM=24 это система, умножаем 2 уравнение на -2 и складываем: 2AB+BC-2AB-BC-2AM=32-48 -2AM=-16 AM=8 ответ: AM=8
Диагональ ромба разбивает его на два равных треугольника, со сторонами равными сторонам ромба и третья сторона - диагональ ромба, все стороны равны. В равностороннем треугольнике углы = 60° - угол при вершине ромба и ему противолежащий. Сумма углов четырехугольника 360°. 360°- 60°- 60°= 240° - сумма противолежащих равных углов ромба 240°:2=120° - градусная мера противолежащих углов ромба второй пары ответ: 60°, 120°, 60°, 120°
Если диагональ ромба равна его стороне, то треугольник образованный этой диагональю и двумя сторонами ромба равносторонний, следовательно все углы в нем по 60 градусов, значит 2 противолежащих угла в этом ромбе по 60 градусов, а другие два по (360(сумма углов в четырехугольнике) - (60 + 60)):2 = 120 градусов. ответ: два угла по 60 градусов и два по 120 градусов.
Диагональ ромба разбивает его на два равных треугольника, со сторонами равными сторонам ромба и третья сторона - диагональ ромба, все стороны равны. В равностороннем треугольнике углы = 60° - угол при вершине ромба и ему противолежащий. Сумма углов четырехугольника 360°. 360°- 60°- 60°= 240° - сумма противолежащих равных углов ромба 240°:2=120° - градусная мера противолежащих углов ромба второй пары ответ: 60°, 120°, 60°, 120°
Если диагональ ромба равна его стороне, то треугольник образованный этой диагональю и двумя сторонами ромба равносторонний, следовательно все углы в нем по 60 градусов, значит 2 противолежащих угла в этом ромбе по 60 градусов, а другие два по (360(сумма углов в четырехугольнике) - (60 + 60)):2 = 120 градусов. ответ: два угла по 60 градусов и два по 120 градусов.
Pabm=AB+BM+AM
при этом в равноб. треуг. AM - биссектриса, медиана и высота, значит:
BM=0,5BC
треуг. равноб., значит:
AB=AC
упрощаем выражения и подставляем значения:
2AB+BC=32
AB+0,5BC+AM=24
это система, умножаем 2 уравнение на -2 и складываем:
2AB+BC-2AB-BC-2AM=32-48
-2AM=-16
AM=8
ответ: AM=8