Ттебе как надо решать на падобии: пример 2. решить неравенстворешение. точки и (корни выражений, стоящих под модулем) разбивают всю числовую ось на три интервала, на каждом из которых следует раскрыть модули.1) при выполняется , и неравенство имеет вид , то есть . в этом случае ответ .2) при выполняется , неравенство имеет вид , то есть . это неравенство верно при любых значениях переменной , и, с учетом того, что мы решаем его на множестве , получаем ответ во втором случае .3) при выполняется , неравенство преобразуется к , и решение в этом случае . общее решение неравенства объединение трех полученных ответов.ответ. .
1.нет. По признаку деления числа на 3 оба числа делятся на 3(на число отличное от них самих и 1), так как сумма цифр єтих чисел делится на 3. Значит они составные, а не простые. Число 20012345 составное, так как последняя цифра 5, по признаку деления на 5, это число делится на 5(на число отличное от 1 и себя). Оно составное. 111111111 - делится на 3(или на 9) по признаку делимости на 3(на 9). составное. Т.е. не являются простыми
Первые 25 простых числе в порядке возрастания 2,3,5,7,11(первые пять), 13,17,19,23,29,(вторые пять) 31,37, 41,43,47,(третьи пять) 53, 59, 61, 67, 71(четвертые пять) 73, 79, 83, 89, 91(пятые пять)
Решение на фотографии: