25 км/ч скорость лодки в неподвижной воде.
Объяснение:
Плот плывет со скоростью течения реки , следовательно:
30 : 5 = 6 ч . - время , которое он затратил
6-1 = 5 ч. - затратила лодка на путь туда-обратно
Лодка:
Собственная скорость - х км/ч
По течению:
Скорость - (х+5) км/ч
Расстояние - 60 км
Время - 60 /(х+5) ч.
Против течения :
Скорость - (х-5) км/ч
Расстояние - 60 км
Время - 60/(х-5) ч.
Уравнение.
60/(х+5) + 60/(х-5) = 5
(60(х-5) +60(х+5) ) / (х²-25) = 5 * (х²-25)
60х - 300 +60х +300 = 5(х²-25)
120 х = 5х²-125
120х -5х² + 125 =0 ÷(- 5)
х²-24х- 25=0
D= (-24)² - 4 *(-25) = 576+100=676
D > 0 - два корня
х₁= (24-√676) /2 = (24-26)/2 = -2/2=-1 - не удовл. условию задачи
х₂= (24+26 )/2= 50/2 =25 - собственная скорость лодки
Чтобы получить решение квадратного уравнения графическим Квадратное уравнение разделяют на две функции, линейную и квадратичную. А затем строят графики этих функций на одной координатной плоскости.
Квадратное уравнение
1.ax2+bx+c=0разбивают на две функции
2.y1=ax23.y2=−(bx+c)Функция y1 это парабола. Функция y2 это прямая линия. Решением, корнями квадратного уравнения являются точки пересечения этих функций.
При решении могут представиться три варианта:
Функции имеют две точки пересечения - два корня квадратного уравнения действительны и различны между собой.Функции имеют одну точку пересечения - квадратное уравнение имеет только один действительный корень.Функции не имеют ни одной точки пересечения - тогда оба корня квадратного уравнения мнимые, комплексные числа.
A) (x+1)^2
Б)( 1-x)^2
В) (2-а)^2
Г)
Д)( 5с+3)^2
Е) (y-8a)^2
*) (ab+1)^2
3) (y-25)^2
K) (2-6a)^2
2.
100 +20a+a^2
Объяснение:
Некоторые я не поняла.