Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
#1
Р = 24см
S = ?см^2
Р = а × 4 => а = Р : 4
а = 24 : 4 = 6см
S = а × а
S = 6 × 6 = 36см^2
#2
а□1 = 5см
S□1 = ?см^2 <|
а□2 = 5см × 2 = 10см |
S□2 = ?см^2, в ? раз больше, чем __|
Найдем площадь первого квадрата.
S□1 = 5 × 5 = 25см^2
Теперь площадь второго квадата.
S□2 = 10 × 10 = 100см^2
Теперь нужно узнать "во сколько раз площадь первого квадрата, больше площади второго квадрата" то есть, нужно разделить.
100 : 25 = 4 То есть в 4 раза больше.
#3
АВ
| |
| |
D||С
Сторона ОА =11см... ОА нету...
неправильное условие...
ответ: Ø
В. 00 = R+R,