Сторона AD=AM+MD=8+2=10. Сторона BC=AD=8+2=10.Т.к. В параллелограмме ABCD биссектриса острого угла C, то угол MCB= углу MCD. В параллелограмме противоположные стороны параллельны, значит угол BCM= углу CMD, если в треугольнике углы при основании равны, то он равнобедренный, значит CD=MD=8
Периметр=8+8+10+10=36.
ответ:36.
Отметьте как лучшее решение, мне 1 лучшего не хватает до нового звания.
Чертим параллелограмм с острым углом слева внизу, а с большими сторонами горизонтально. Обозначаем вершины начиная с нижней левой по часовой стрелке A,B,C,D. Обозначим АВ=CD=4X, BC=AD=9X. Пусть дана биссектриса угла A. Она пересекает сторону ВС в точке Е. Проводим EF параллельно АВ. ABCD -ромб, АЕ его диагональ. Тогда: AB=BE=EF=AF=CD=4X, EC=FD=9X-4X=5X. Пусть АЕ=Y. Периметр треугольника AB+BE+AE=4X+4X+Y Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X Разность периметров (Y+18X)-(Y+8X)=10X. 10X=10, X=1. Периметр параллелограмма 2*(4X+9X)=26X=26. Вроде так.
Сторона AD=AM+MD=8+2=10. Сторона BC=AD=8+2=10.Т.к. В параллелограмме ABCD биссектриса острого угла C, то угол MCB= углу MCD. В параллелограмме противоположные стороны параллельны, значит угол BCM= углу CMD, если в треугольнике углы при основании равны, то он равнобедренный, значит CD=MD=8
Периметр=8+8+10+10=36.
ответ:36.
Отметьте как лучшее решение, мне 1 лучшего не хватает до нового звания.