Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
Определения: "Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники. Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость." Объем прямоугольного параллелепипеда - произведение трех его измерений. В нашем случае высота параллелепипеда h равна 2√2 см (как катет, лежащий против угла 30°) Длина основания равна а=4√2*Sin45°=4 см. Ширина основания по Пифагору: b=√[(4√2*Cos30)²-4²]=√(24-16)=2√2 см. V=a*b*h=4*2√2*2√2=32 см³ Это ответ.
1=113
2=67
3=67
4=113
5=24
6=156
7=156
8=24